
1

CS61B, Spring 2024 @ UC Berkeley
Industrial Applications of Software Engineering

Software Engineering I
Lecture 27

Lecture 27, CS61B, Spring 2024

Background
Complexity
Strategic vs Tactical Programming
Resource Configurations and Testing
Commit History Traversal
Summary

Background

2

I’m the guest lecturer for today, Aniruth Narayanan.
● Senior, majoring in EECS and Business
● Teaching Assistant for 61B

○ First taught 61B in Summer 2021
● From Florida
● Took a gap year to work in industry

○ The subject of this lecture!
○ Later, I’ll talk about some of the problems

I’ve worked on

Q & A will be at the very end.

Background

3

Some important disclaimers:
● Nothing I say should be interpreted as anyone’s opinion but my own.
● Nothing contained in these slides is confidential or proprietary information of

any company.
● The sections on complexity and strategic/tactical programming are inspired

by Josh Hug’s slides (think of these as less detailed versions).

Disclaimers

4

https://docs.google.com/presentation/d/1Aq8Zrw9YcpnueJ5k36Qdvglsc9v8oFQ_y17UDyevrCU/edit#slide=id.g409413421_0637

In 61A, you were focused on the correctness of a program.

In 61B, you are focused on engineering programs: picking from multiple options by
considering tradeoffs.
● You now work on larger scale projects, but still have to abide by many of our

requirements and specifications (e.g. functions, runtime, etc.).
● Working on small projects isn’t the same as working on large scale,

design-oriented programs where the task is defined by you.

The best way to learn these differences is through experience; this lecture will
have some examples and some light theory as a sampling.

Project 3 allows you to embrace the challenge of large scale yourself.

Engineering and Scale

5

https://cs61a.org/

Lecture 27, CS61B, Spring 2024

Background
Complexity
Strategic vs Tactical Programming
Resource Configurations and Testing
Commit History Traversal
Summary

Complexity

6

Restrictions of Engineering

In other disciplines, we’re limited by imperfect materials.

Many fields are constrained:
● Chemical engineers have to worry about temperature.
● Material scientists have to worry about how brittle a material is.
● Civil engineers have to worry about the strength of concrete.

In computer science, we’ve solved most of the underlying material constraints
decades ago.
● The sum power of Apollo missions is less than the computing power of your

phone.

7

Early computers were used for limited tasks.

ENIAC: the first general-purpose programmable
computer that was 1,000 times faster than anything
else at the time.

The Power of Software

8

Rollercoaster Tycoon was an early game (1999)
where players would design amusement parks.

99% of the code was written in Assembly (direct
machine instructions), with 1% written in C.

This is very hard for programmers to reason about.

The Power of Software

The game was designed to run on Intel Pentium CPUs,
which were 66 MHz (66 million operations per second).

The Intel i9 14th Gen of today can run at up to 6GHz (6
billion operations per second). 100x more

9

https://www.intel.com/content/www/us/en/products/docs/processors/core/core-14th-gen-desktop-brief.html

Most video games today require at least 3.5
GHz and 8 GB of RAM.

In 1996, the average computer had only 8 MB
or 16 MB of RAM.

The average software product doesn’t require
the computing power we have available today.

The Power of Software

The limitation comes from the creative ways we plan and design what we’re building.

1. An individual programmer cannot effectively manage a large software system.
2. Any one programmer should only need to understand a fraction of the codebase.

10

“Anything related to the structure of a software system that makes it hard to
understand and modify it” - John Ousterhout, “A Philosophy of Software Design”

As programs become more feature-rich, their complexity increases. Our goal is to
keep software simple.

Why? Complex systems require a lot of effort to make small improvements.
● It takes longer to understand how code works
● It is more difficult to fix bugs
● It it harder to modify functionality

○ Unknown unknowns: it’s not clear what you need to know to make
modifications

○ Common in large codebases

A Definition of Complexity

11

Here’s an example from Spotify’s Engineering Blog of their approach to software.
They have >1 billion lines of code, 60 million used in production, from thousands
of components.

Empirical Proof

12

https://engineering.atspotify.com/2023/04/spotifys-shift-to-a-fleet-first-mindset-part-1/

Complexity scales exponentially with respect to functionality.

Each new piece of functionality has to interact with all the existing functionality in
various ways, for all possible combinations.

The Runtime of Complexity

13

There are two kinds of complexity:
1. Unavoidable (Essential) Complexity

a. Inherent, inescapable complexity caused by the underlying functionality
2. Avoidable Complexity

a. Complexity that we can address with our choices

In response to avoidable complexity, we can:
1. Make code simpler and more obvious

a. Using sentinel nodes in Project 1
2. Modules

a. Abstraction: the ability to use a piece without understanding how it works
based on some specification

b. Interfaces - HashMap, BSTMap both are Maps

Managing Complexity

14

Tackling code complexity from software scale is common in a wide variety of
industries:
● Software Engineering
● Data Science
● Machine Learning
● Human-Computer Interaction
● Analyst
● And more!

All of these roles have to manage functionality and interactions with programs.

You can utilize these concepts in whatever field you go into.

Relevance

15

Lecture 27, CS61B, Spring 2024

Background
Complexity
Strategic vs Tactical Programming
Resource Configurations and Testing
Commit History Traversal
Summary

Strategic vs
Tactical
Programming

16

The focus is on getting something working quickly, leveraging workarounds.

Ex: Code that contains many nested if statements to handle many separate cases
that is hard to explain.

Prototypes, proof-of-concepts leverage tactical programming. The goal is to show
that something could theoretically work.

However:
● There’s minimal time spent on overall design
● Things are complicated with workarounds to get things working
● Refactoring takes time and potentially means restarting

○ Consider Project 2 runtime requirements and planning the constructor
● Often, the prototype ends up deployed in the real world due to a lack of time

Tactical Programming

17

A different form of programming that emphasizes long term strategy over quick
fixes. The objective is to write code that works elegantly - at the cost of planning
time.

Code should be:
● Maintainable
● Simple
● Future-proof

○ 61B projects have deadlines; afterwards, you can throw it away

If the strategy is insufficient, go back to the drawing board before continuing work.

This is your design document for Project 2B/2C.

Strategic Programming

18

Lecture 27, CS61B, Spring 2024

Background
Complexity
Strategic vs Tactical Programming
Resource Configurations and Testing
Commit History Traversal
Summary

Resource
Configurations
and Testing

19

Retool is a company that helps developers build internal tools. I worked as a
software engineer intern on the Connect team in Fall 2022.

For context on my work, here’s what the company is useful for:
● Imagine you make surveys with lots of responses (Google Sheets).
● You want to build a dashboard to show common responses. This involves:

○ A website (frontend) to display the results
○ A server (backend) to get data from the resources (Google Sheets)
○ Maintenance and development of both!

● Instead, Retool allows writing queries linked to drag and drop components.
● Much of this power comes from being able to connect to nearly any API or

database.
○ API: An interface for working with data; we don’t care about how it works

underneath the hood, just that we can use the specifications.

Retool

20

Use Case Workflow

Form Sheets Server Site

21

Designing Resource Configurations

Disclaimer: the method to implement resources was decided before I joined, but I
needed to both understand and upgrade functionality.

The goal is to design a system for users to specify configuration information that
allows Retool to connect to and retrieve information from a resource on the user’s
behalf. In our previous analogy, this would be a Google Sheets URL.

22

Configuring a Resource

Image from Retool’s Resources Documentation
23

https://docs.retool.com/data-sources/quickstarts/database/databricks

Naive Implementation

The naive implementation is to build a new page for each resource in its entirety.

Problems with this solution:
● Making a modification (such as wording) would require updating every page
● Breaking changes from updated requirements requires updating every page

○ What is the List interface changed from size() to .length?
● Adding a new resource is complicated (and requires a lot of copy-paste)

24

For non-database resources without
patterns, we can customize elements
with properties to accept.
● Overriding the default database

functionality!

Designing Resource Configurations

The ultimate solution was to build a ResourceConfig - a way to describe properties
of a resource with a few parameters using common patterns to generate inputs.
● Sounds a lot like an interface!
● This leverages modularity and obviousness when designing a config.

Most databases have similar
requirements:
● a host
● a port
● a name
● connection options

25

Valid Resources

Not all resources were valid.
● If a user did not submit the necessary information for a resource, they

wouldn’t be allowed to make the resource.
○ Java prevents you from writing knowingly bad code with compiler errors.

● This was specified in a validation function included in the resource config.
○ Validation for a resource comes included!
○ Without knowing what a resource is, we can call on the validation

function for any resource - guaranteed to exist from the interface.
■ Any List can use the size method, independent of what kind of List.

26

Missing Fields

When users put in their credentials, there’s an option to Test Connection with a
sample request. If the validation function failed, this was grayed out.

My objective was to add a way to track missing fields and incorporate some
validation for fields.

This way, a user can be informed what needs to be changed when making a
resource fails.

A strategy question: How can we expand functionality to include this? What do we
need to change?

27

Solution and Refactoring

The solution was to rethink validation as passing the missing fields test.
● Parameters would be cycled through, and if one was missing, the

accompanying “missing field” is added to the list.
● If the list of missing fields is empty, then the resource can be tested/created!

The fields can be upgraded to integrate and generalize validation.
● For example, every port number for a database should be a number.
● Upgrading the one field component updates all usages.

○ Analogy: A superclass modification affects all subclasses that inherit
that functionality.

28

Testing

Testing in the real world is very important! There is no autograder to leverage to
gain confidence in a solution.

Would the right missing fields be displayed?
● For the “patterned” database resources, I wrote a utility that tested every

possible combination of inputs and outputs.
○ If there were mock resources, this could be expanded further.

● For the other resources, select test cases were chosen and manually written.

This pattern is powerful - updating the utility updates the tests for all resources.

Resources (and libraries/dependencies) update all the time, sometimes with
breaking changes. This is future-proof code.

29

Lecture 27, CS61B, Spring 2024

Background
Complexity
Strategic vs Tactical Programming
Resource Configurations and Testing
Commit History Traversal
Summary

Commit History
Traversal

30

I want to find which versions of my project contain a
certain change, to compare some metrics like
adoption. Some of these versions are special - they
were deployed into the real world.

Would you want to have 5 or 6 updates to your phone
every day? Apple and Google release new versions in a
cycle, with minor changes in between.

Gradescope only takes in a number of your
submissions in a given time interval, not every one.

They don’t release every single time a new commit is
pushed internally.

The Problem

31

For simplicity:
● Each change is a git commit - the same git commits generated when you use

git commit -m “submitting lab1” and pushed using git push origin
main.
○ Versions refer to the most recent git commit on a given branch.

● There is easy access to all of the git commits that can be loaded on any
computer in a reasonable amount of time.

● There are a lot of commits - caching the results (i.e. storing which commits
are in every single deployment) is infeasible.

● Once a change is made, we don’t undo or modify that change (in practice, we
can use git blame).

Manually splitting the commits for inclusion by hand is slow, when there’s a lot
(~millions or billions) of them.

Some Constraints

32

Each commit has a “parent” (potentially two if it is a merge commit).
● Vertices are commits.
● Edges are directed; from commit to its parent.

○ Commits store their parents, since upon creation commits only know
parent(s), not children).

Git as a Graph

A

B

D E

C

F

H

G

Time of Commit 33

Consider the following graph of commits, where arrows are drawn to a commit’s
parents. Some of these are the deployed commits, marked in green.

Which deployed commits contain the change in commit C?

The Git Graph

A

B

D E

C

F

H

G

Time of Commit 34

Consider the following graph of commits, where arrows are drawn to a commit’s
parents. Some of these are the deployed commits, marked in green.

Which deployed commits contain the change in commit C?

The Git Graph

A

B

D E

C

F

H

G

Time of Commit 35

Consider the following graph of commits, where arrows are drawn to a commit’s
parents. Some of these are the deployed commits, marked in green.

Which deployed commits contain the change in commit C?

C, D, and G!

The Git Graph

A

B

D E

C

F

H

G

Time of Commit 36

An Approach

Consider two approaches to do this programmatically:
1. Work backwards in the reverse direction of the commits storing parents

a. git is designed to tell us parents of commits (such as through git log)
b. This is what we did previously!

2. Work in the direction of the commits storing parents
a. We have to grab every single “ending commit” and then work through all

the parents until we hit the change we’re checking for in commit C.
b. If we don’t hit the change, we can only terminate once we work

backwards enough to find commits from all parents that have
timestamps before commit C.

37

This approach requires us to work backwards from all commits after the time of
the given commit.

It’s also a bit more challenging to implement: we need timestamps and there
might be a lot of branches (each with its own ending commit).

Approach 2

A

B

D E

C

F

H

G

Time of Commit 38

Modifications for the Solution

The solution comes in the way that we store data!

We normally think about Git in a commit/parent relationship. For example:

What if the direction of the edges was reversed? That way, a BFS from the commit
can be done forward in time to find deployments that contain it.

This could be implemented using an adjacency list as opposed to storing just one
(or two) parent(s) since a commit can only have one parent (two if it’s a merge
commit), but it could have infinite children.

39

The Solution

We can incorporate more time-based optimizations to restrict the search, but
here’s the general idea:
1. Build a git commit graph in reverse order, storing mappings from commits to

a list of children.
2. Generate a set of the deployed commits (separate from the graph).

a. Why might I want to use a set instead of a list?
b. Runtime! A HashSet gives me amortized constant runtime as opposed to

a LinkedList or an ArrayList to check contains.
3. Do a BFS from the input commit and check if commits traversed are in the

deployed commits.
a. Potentially multiple input commits here and compute only step 3.

This is much faster! No more manual search! Obvious and modular!
This problem itself is a subproblem of a larger project which is simpler to solve.

40

Lecture 27, CS61B, Spring 2024

Background
Complexity
Strategic vs Tactical Programming
Resource Configurations and Testing
Commit History Traversal
Summary

Summary

41

● 61B concepts and knowledge is applicable in real world scenarios.
● Good code is more than just working code.
● Code complexity scales with functionality and poses challenges to maintain.
● Practice good design principles in your classes.
● Testing is necessary to have confidence in your code.
● The real world will give you ambiguous problems with loosely defined

constraints; it is your duty to make sense of these and then leverage your
skills to select the best solutions given constraints while considering
tradeoffs.

If this kind of content sounded interesting to you - check out engineering blogs! I
also write about similar topics.

Summary and Takeaways

42

https://www.aniruthn.com/blog

